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Introduction: how does WF work?

Tor

User = Alice

Adversary i



Why is WF so important?

e Tor as the most advanced anonymity network
e Allows an adversary to discover the browsing history
e Series of successful attacks

e Low cost to the adversary
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Introduction: unrealistic assumptions

Client settings:
e.g., browsing behaviour

Adversary



Introduction: unrealistic assumptions

Adversary:
e.g., replicability

Adversary



Introduction: unrealistic assumptions

Web:
e.g., staleness

Adversary




Contributions

e A critical analysis of the assumptions
e Evaluation of variables that affect accuracy
e An approach to reduce false positives

e A model of the adversary’s cost



Methodology

e Based on Wang and Goldberg'’s

o Batches and k-fold cross-validation

o Fast-levenshtein attack (SVM)

e Comparative experiments

o Key: isolate variable under evaluation (e.g., TBB version)



Comparative experiments: example




Comparative experiments: example

Train: on data with default value
e Ste

Test: on data with default value } e 1




Comparative experiments: example

| \K ‘
Train: on data VYith default \_/alue Acc. Test
e St Test: on data with value of interest




Datasets
e Alexa Top Sites
e Active Linguistic Authentication Dataset (ALAD)

o Real-world users (80 users, 40K unique URLS)

o Training on Alexa and testing on ALAD?
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45% not in Alexa top 100 E==)> Prohibitive number of FPs



Experiments: multitab browsing
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New Tab - Tor Browser

File Edit View History Bookmarks Tools Help
{_iNewTab

@v St | earch or enter address v [}] Bl v startpage Q J\./]- fd,v

e FF users use average 2 or 3 tabs
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Experiments: multitab browsing

Tor Browser
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e FF users use average 2 or 3 tabs

e Experiment with 2 tabs: 0.5s, 3s, 5s

e Background page picked at random



Experiments: multitab browsing

Tor Browser

File Edit View History Bookmarks Tools Help
New Tab

@v St | kearch or enter address v Ls] B v startpage Q -\J;L fd‘v

e FF users use average 2 or 3 tabs

e Experiment with 2 tabs: 0.5s, 3s, 5s

e Background page picked at random

e Success: detection of either page




Experiments: multitab browsing

Accuracy for different time gaps / Tab Tab 2

77.08%

BW

v Time

7.9% 8.23%

Control Test (3s)
Test (0.5s) Test (5s)
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Experiments: TBB versions

e Coexisting Tor Browser Bundle (TBB) versions
e Versions: 2.4.7, 3.5 and 3.5.2.1 (changes in RP, etc.)
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Experiments: TBB versions

e Coexisting Tor Br versions
Latest version of RP
e \ersions: 2.4.7, 3. ges in RP, etc.)

79.58%

66.75%

Control Test Test
(3.5.2.1) (3.5) (2.4.7)



Experiments: network conditions

VM Leuven
VM New York @
KU Leuven VM Siraapore
DigitalOcean

(virtual private servers)
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Experiments: network conditions

VM Leuven
52 ”;yﬁ'
VM Singapore
66.95% S
8.83%

Control (LVN) Test (NY)

12



Experiments: network conditions
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VM New York
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Experiments: network conditions

VM Leuven
VM New York 6

VM Singapore
76.40%
68.53%
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Experiments: entry guard config.
e \What entry config. works better for training?

e 3 configs.:

o Fix 1 entry guard
o Pick entry from a list of 3 entries guards (default)

o Pick entry from all possible entries guards (Wang and Goldberg)

13



Experiments: entry guard config.

Accuracy for different entry guard configurations

70.38%

any 3 entry 1 entry
guards guard
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Experiments: data staleness

Staleness of our collected data over 90 days
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Summary
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The base rate fallacy: example

e Breathalyzer test:

o 0.88 identifies truly drunk drivers (true positives)

o 0.05 false positives

e Alice gives positive in the test
o What is the probability that she is indeed drunk? (BDR)

o Isit0.957 Is it 0.887? Something in between?

17
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The base rate fallacy: example
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The base rate fallacy: example

e 1% of drivers are driving

drunk (base rate or prior).




The base rate fallacy: example

2

o0 X
oo <
o 2
o ©
O W
O ©
05
X O
S —
D R
— C
© O
c B
O 0
L @©
o

by the test



The base rate fallacy: example
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The base rate fallacy: example
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The base rate fallacy in WF
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The base rate fallacy in WF

e Probability of visiting a monitored page?

® “false positives matter a lot”’

e Experiment: 35K world

"Mike Perry, “A Critique of Website Traffic Fingerprinting Attacks”, Tor project Blog, 2013. https://blog.

torproject.org/blog/critique-website-traffic-fingerprinting-attacks. o



Experiment: BDR in a 35K world

B FfFPR M TPR BDR (uniform) [l BDR (non-popular)
1

e Uniform world

e Non-popular pages ) (

from ALAD

0.01

2000 9000 16000 23000 30000

Size of the world
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Classify, but verify

e \Verification step to test classifier confidence
e Number of FPs reduced 397-42 (400)

e But BDR is still very low for non popular pages
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Cost for the adversary

e Adversary’s cost will depend on:

o Number of pages
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Versions of a page: St Valentine’s doodle

Total trace size
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Cost for the adversary

e Adversary’s cost will depend on:

o Number of pages

o Number of targets
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Non-targeted attacks

Tor
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Cost for the adversary

e Adversary’s cost will depend on:

o Number of pages
o Number of targets

o Training and testing complexities
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Cost for the adversary

e Adversary’s cost will depend on:

o Number of pages
o Number of targets

o Training and testing complexities

e To maintain a successful WF system is costly

32



Limitations

e \We took samples and may not be representative of
all possible practical scenarios

e Variables difficult to control
o Time gap

o Tor circuit
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Conclusions

e WF attack fails in realistic conditions
e \We do not completely dismiss the attack
e Attack can be enhanced at a greater cost

e Defenses might be cheaper in practice
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Thank you for your attention.

Questions?



