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Abstract. Search queries can be used to infer preferences and interests
of users. While search engines use this information for, among others,
targeted advertising and personalization, these tasks can violate user’s
privacy. In 2006, after AOL disclosed the search queries of 650,000 users
and some of them were re-identified, many Privacy Enhancement Tech-
nologies (PETs) have sought to solve this problem. The Dissociating
Privacy Agent (DisPA), is a browser extension that acts as a proxy be-
tween the user and the search engine and semantically dissociates queries
on real time. We show that DisPA increases the privacy of the user and
hinders re-identification. We also propose an algorithm to measure and
evaluate the privacy properties offered by DisPA.

Keywords: Privacy, Web Search, Search Personalization, Query Clas-
sification

1 Introduction

Web search has become an elementary task in the Internet and virtually every-
body makes use of search engines to find information in a quick and effective way.
Providers of search services log data related to their users and track them across
the Web. The reason is twofold. Firstly, profiling is profitable for the provider
who can exploit business opportunities by means of Marketing Research and
Targeted Advertising [1]. Secondly, due to the growth of the Web, profiling is
essential to improve ranking algorithms and offer a more efficient search [2–4].

The task of profiling consists in the collection of data about the user’s web
interaction. These data are stored in files at the server-side called “server logs” or
“query logs”. By applying data mining techniques on these logs, search providers
extract traits of the user such as demographic aspects (e.g., age, gender or na-
tionality) or main areas of interest, that are modelled as categories such as
“Cinema” or “Football”. Afterwards, the ranking algorithms rearrange the list
of results to deliver first those that are more useful for the user according to his
preferences [5].
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This personalization can be beneficial because saves time to the user who
otherwise would have to skim over the large list of results manually. Nevertheless,
the indiscriminate logging of data raises privacy concerns with respect to social
sorting and discrimination. As it has been shown several times in the past,
potentially sensitive information can be inferred from search queries, such as
sexual orientation, health status, or political beliefs [6].

A milestone in history of privacy breaches is the AOL search data leak in
2006 [7], when queries of approximately 650,000 users submitted over a 3-month
period were disclosed [8]. Despite that AOL claimed to have anonymized the
dataset by removing identifiers, journalists of the New York Times managed to
link one of the logs to a real identity [9]. This was very remarkable as it proved
that queries by themselves can uniquely identify an individual or, at least, reduce
the search space considerably.

Several approaches are commonly taken to address this problem. First, the
user can use cryptography-based solutions which provide strong privacy guaran-
tees, but require the provider to integrate them in the backend [10]. Second, the
user can connect to the service through an anonymous communication system
that would provide him a different identity for each session. Finally, he might
still be identifiable and obfuscate, either the content of the queries, or his search
profile by means of dummy queries [11].

In this paper we describe a Privacy Enhancing Technology (PET) for web
search that has been developed through the last two years [12, 13]. It tackles
the problem from still another perspective that is characterized by taking into
account search personalization. We assume that the user benefits from person-
alization and, for this reason, we strive for a trade-off between the utility (per-
sonalization) and the cost (privacy) of releasing data.

The rest of the paper is organized as follows. Section 2 reviews the state-
of-the-art in private web search. In Section 3 we present our threat model and
recall the basic operation of the approach we propose: the Dissociating Privacy
Agent (DisPA for short) [12]. In Section 4 we detail the internal operations
of DisPA. In Section 5 we present the different experiments conducted for the
evaluation of the agent and show the results obtained. In Section 6 we point out
the limitations of our work and bring some discussion points. The paper finishes
with the conclusions and lines of future research in Section 7.

2 Related work

There exist several cryptography-based solutions for private search: private in-
formation retrieval (PIR) [14, 15], oblivious transfer (OT) protocols [16], and
methods based on homomorphic cryptosystems (e.g., Paillier) [17]. These pro-
tocols provide strong privacy guarantees such as confidentiality of search terms
and results. However, there are some drawbacks for their implementation in a
real-world web search engine. For instance, they often assume cooperation by
the provider. Search providers however do not have any incentives to implement
costly protocols they cannot profit from, and thus the deployment of these solu-
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tions is not realistic in practice. Further, given that search terms are encrypted,
they render useless for personalization. Another important difficulty that makes
them inconvenient is the computational complexity of these methods given the
great size of the Web.

For these reasons, the problem is often relaxed towards more applicable
schemes. Among these, we find two main different strategies: (i) to obfuscate
the user’s profile by submitting fake queries together with legitimate ones, and
(ii) to hide the identity of the user in front of the search engine, so queries can-
not be attributed to him. The former category is often called obfuscation-based
techniques and it has been thoroughly studied [18–20, 19, 21–26]. We refer the
reader to a deeper analysis of obfuscation techniques for more details [27].

Most of low-latency anonymous communications systems fall in the latter
category. For instance, the user could employ The Onion Router (Tor) [28] to
submit the query. The server would observe the IP of a different Tor exit node
for each session, making it harder to link user’s queries across sessions. This
approach has two important limitations. First, as the AOL case demonstrated,
queries by themselves can identify users independently of the communication’s
metadata. Second, due to the time overhead introduced by Tor, it deteriorates
the usability of the service and therefore it is not suitable for a long-term solution.

Besides of the particular shortcomings that each of these approaches have,
they have a drawback in common: all of them diminish the quality of server logs
for profiling. Obfuscation-based techniques introduce false information about the
preferences of the user, and anonymity networks induce the creation of a new
server log for each session.

Our research fills this gap by proposing an intelligent agent that helps to
protect the user’s privacy, while preserving the utility of his profile for person-
alization. There are different strategies to achieve this goal in the literature [20,
29–31], and we also have found in recent publications very similar approaches to
the ones we had presented for the development of DisPA [32, 33]. This shows a
common interest of the research community towards the development of proto-
cols that strive for a trade-off between utility and privacy in web search.

3 Threat Model and Fundamentals

We assume that the adversary is the search engine provider or a third party
who has access to all server logs. The goal of the adversary is to extract new
information about a targeted user out of the logs or, in the worse case from the
user’s point of view, to discover the real identity of the user.

We can model the adversary as a honest-but-curious adversary. This means
a passive adversary who does not alter the functionality of the system but can
eavesdrop queries and analyse them. Search providers fit in this model because
they are interested in ensuring the availability and good quality of the service.

The adversary might as well have some auxiliary knowledge that enables
re-identification. As it has been shown in the past, an adversary can use cross-
correlation with multiple databases to uniquely identify an individual (e.g.,
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Narayanan and Shmatikov showed it with popular movie databases [34]). We
will discuss in more detail this problem in Section 6.

Before diving into the fundamentals of the agent we are going to describe our
system model. A query is basically an HTTP(S) request from the user’s browser
to the search engine’s web server. The URL field contains query terms and other
user preferences encoded as URL parameters. The cookie field contains, among
other domain-specific cookies, a cookie with a user’s unique identifier, the so-
called “cookie ID”. The query terms are stored in a server log along with other
connection-related information, such as the IP and the cookie ID.

We make the assumption that search engines only use cookies to identify
users. This might be a strong assumption to hold, but the last version of Google’s
privacy policy and a recent study on log retention policies support it [35, 36].
Also, a recent study on the prevalence of “device fingerprinting”, a new tracking
technique that leverages information collected about devices for user identifica-
tion, has not found evidence of the adoption of such technique in most popular
search engines [37].

3.1 The Dissociating Privacy Agent

The underlying concept of our approach is “dissociation”. Dissociation is based
on the observation that users are multifaceted individuals, in the sense they are
interested in various areas of knowledge, such as “Science”, “Sports” or “Music”.
Let C(u) = {c1, c2, . . . , cn} ⊂ C be the set of categories of interest for a particular
user u. Let Uc be the set of users interested in category c. Then, the anonymity
set of u is defined as

A(u) := Uc1 ∩ Uc2 ∩ . . . ∩ Ucn .

Our hypothesis is that, for a fine-grained taxonomy C, A(u) is likely to contain
only user u. Put differently, the interests of the user define his identity and can
be used to uniquely identify him.

The idea of dissociation is to break down the identity of the user into partial
identities, each one of them grasping a fraction of his interests. We name these
artificial identities as “virtual identities”. If we consider each virtual identity as
a different user, dissociation increases the probability of users sharing the same
interests. It is trivial to prove that |A(u)| ≤ |A(ui)|, where ui are the virtual
identities of u after dissociation, for i = 1, . . . , n.

To illustrate this we show in Figure 1 an example of dissociation. Each circle
represents a set Uci and each user is represented with a letter: s, t, u, v. In Fig-
ure 1a we see that the anonymity set of u only contains u. We apply dissociation
on u by creating a virtual identity for each of the set Uci for the three main
facets: u1, u2, u3. As a result, in Figure 1b we see how the new anonymity sets
A(ui) have size 2.
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Fig. 1: Venn diagrams showing the dissociation process for user u.

4 Design

In order to implement dissociation, we designed the Dissociating Privacy Agent
(DisPA). DisPA is an intelligent agent, i.e., a piece of software that takes deci-
sions on behalf of the user. The agent is implemented as a browser add-on and
acts as a proxy between the browser and the web server.

To achieve dissociation, DisPA intercepts HTTP requests to the search en-
gine. Then, the connection is bypassed through a query classifier. DisPA gener-
ates new tracking data for each possible classification outcome and replaces them
in the HTTP request on real-time. To the eyes of the server, queries classified
by DisPA in different categories appear as requests from different users and thus
are logged into different files at the server-side (see Figure 2).

To keep consistency across different HTTP sessions, we define a context in
the browser formed by: the jar of cookies, history of queries, history of clicked
links, lists of results and the user-agent. This is intended to prevent the server
from spotting similarities among sessions and link them to the same user.

As a result, the identity of the user is divided and it is harder to achieve re-
identification by means of dissociated logs. Furthermore, note that dissociated
logs are still useful for profiling as, by construction, they preserve partial but
real user interests that search engines can extract and use for personalization.

4.1 Query Classification

A fundamental part of the agent is query classification. The user sends queries
through the browser add-on’s interface and the agent classifies them before sub-
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mitting them to the search engine. DisPA uses the taxonomy of the Open Di-
rectory Project (ODP) to build a faceted search engine and classify queries
quickly [38].
dispa - Untitled

q1='messi'

q2='football team'

q3='jordan'

q4='higgs boson'

q5='dali'

q6='picasso'

Browser Category

Science

Sports

Arts

Tracking data

Cookie id0

Cookie id1

Cookie id2

Search Engine

HTTP Request

id0
q1

q2

q3

id1
q4

id2
q5

q6

Server logs

DisPA

Fig. 2: Representation of the implementation of dissociation in DisPA.

The facets of the user are modelled as categories of the first level of the
ODP tree which are:

Adult, Arts, Games, Shopping, Business, Health, Society, Computers, Home,
News, Reference, Recreation, Sports, Science, Society.

In order to classify a query, we perform a faceted search in a local search
engine, which is based on an inverse index of the documents in the ODP corpus.
The outcome of the search is a vector with coordinates the number of hits of
the query in each of the categories. That is, let q be a query, given the set of
categories C = {c1, c2, . . . , cn}, the outcome of classification is a vector

(h1, h2, . . . , hn) (1)

where hi is the number of documents indexed in category ci that are hit by query
q, for i = 1, . . . , n.

Given a query q0, a very basic classifier can be defined as:

classify(q0) := arg max
ci∈C

p(ci | q0), (2)
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where in our approach we estimate p(ci | q0) by

p (ci | q0) ≈ hi(q0)∑
i

hi(q0)
.

4.2 Personalized Query Classification

Frequently, queries are vague because they lack of context and polysemy of words
introduce ambiguity in their interpretation. For example, the query “jordan”
might allude to a basketball player, a mathematician, a river, or a country.
Personalized Query Classification (PQC) is more challenging than plain QC in
that it attempts to resolve ambiguity of queries according to subjective user
intents.

In order to take advantage of search engine’s personalization, the dissoci-
ation process must be consistent with the user’s interests. In other words, we
need to perform PQC so that a user mainly interested in basketball gets the
query “jordan” in the basketball profile and obtains results related to “Michael
Jordan”.

The probabilistic model used to achieve PQC in DisPA is similar to the one
presented by Cao et. al. [39]. We contributed with a novel approach based on
inferring user’s interests by means of the history of navigation instead of the
clicking data. The idea is that DisPA, as a browser add-on can take advantage
of its direct access to the browser profile.

Our model can be described in terms of a user u who wants to search for
information related to query q. The search engine interprets q as belonging to
a set of categories. Independently of this, the user accesses web pages w that
might be classified in this set of categories. Thus, w depends on c. In Figure 3
we can see the graphical representation of our model.

u

c

q w

Fig. 3: Graphical model representation for PQC.

The main takeaway is that we keep the classification outcome for the last
k web pages to estimate prior probabilities of the user being interested in each
category – i.e., p(u | c) ≈ p(w1, . . . , wk | c). Then, these priors are used to weight
the final classification for a specific query q.
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We skip the mathematical details and refer the interested reader to the orig-
inal paper for a full specification [12]. The final classifier is

classify(q0) = arg max
ci∈C

p(ci | q0) p(w1, . . . , wk | ci). (3)

And we estimate p(w1, . . . , wk | ci) ≈ vi
|ci|+vi , where vi is the number of

visited sites classified in the i-th category of the ODP.

4.3 Filters of Queries

Our approach stems from the assumption that the user’s identity is defined by his
interests. DisPA enlarges anonymity sets and reduces the adversary’s inference
ability by dissociation. However, it is obvious that this is not sufficient to solve
the problem. There are other types of queries that jeopardize user’s privacy, for
example:

1. Queries that identify the user by their own (e.g., a query containing unique
identifiers or emails

2. Queries that contain named entities like names of locations or personal names
(e.g., terms like “lilburn” and “arnold”)

We characterize these types of queries as the most uncommon queries amongst
the world of users in the search engine, as these are the ones that reveal more
information. This fits in DisPA’s model as people that are fond on rare topics
are easier to identify. Even though their profiles are dissociated, the anonymity
sets may remain very small because there are no other users interested in the
same topics.

We approximate the popularity of a query by the number of results that our
ODP-based classifier returns, that is the absolute frequency of the query in the
ODP. Following the notation in the previous sections this corresponds to

f(q) ≈
∑
i

hi(q).

We set a threshold τ for the frequency, which can be initialized by submitting
a very uncommon query locally. For subsequent queries, we test f(q) < τ , and
filter them out in case it is true. We also used the Stanford’s CoreNLP library for
Named Entity Recognition (NERQ) to recognize locations and personal names.

In order to filter a query out, the agent generates a new virtual identity
exclusively for that particular query. This way we isolate these queries from the
rest of profiles and cannot be used to neither extract new information nor to
link the other dissociated logs of the user.

4.4 User specializations

One of the main flaws of our first implementation was that classification cate-
gories are fixed and did not take into account user’s specializations. A user may
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have a lot of facets but he might be interested in ones relatively more than in
others. For example, compare queries sent from the computer at the work place
and the ones that are sent from home.

In some cases, interests of the user are specialized. Then, most of queries
are classified in one of DisPA’s categories and dissociation makes no difference.
As an example to illustrate this, imagine a user very keen on computers. His
queries fall mostly in the category “Computers” and the other categories are
barely used. As a result, the dissociation by means of the first level of the ODP
has no effect and the agent fails in its attempt to protect the user.

An improvement on this first implementation consists in breaking down these
specialized categories to include more specific categories that describe user’s in-
terest more accurately [13]. In the example above, computers would be expanded
with the children of its node in the ODP tree: AI, Algorithms, Games, Hacking,
Internet, etc. This way queries are sparser and dissociation would be effective.

Nevertheless, note the trade-off between privacy and personalization in this
process. Categories range from broad topics (upper levels of the tree), to very
narrow (lower levels), to the edge case of considering each individual query as
a category. The former provides better personalization because it yields more
data to the server. On the other hand, the latter obstructs personalization but
provides more privacy.

Besides, we have to consider long-term and short-term interests. A user spe-
cialization may be temporal and change with time. DisPA copes with that by
self-adapting over time and rearranging the set of categories for classification
automatically. For instance, in the example above, if the user suddenly becomes
more interested in “Music”, the system should roll-back to the previous state by
retracting the old category “Computers” and, afterwards, expand “Music”.

Our approach to achieve this, we normalize the vector defined in Expression 1
and consider it as the distribution of probabilities of n random variables Xi

representing the event of the query q belonging to the category ci, for i = 1, . . . , n.
Then we measure the dispersion of this distribution by the coefficient of variation
defined by cv := σ

µ .

We set a threshold that indicates when the number of queries per category
is unbalanced and, thus, we have to expand or retract a category of the tree.

4.5 Self-adaptive classification

Recall from Section 4.1 that C = {c1, . . . , cn} is the set of categories used for
classification. Rearrangement of C take place when a deviation from the man is
detected.

The expansion operation occurs when the deviation is positive. In that case
we add all the children of the category to be expanded into C. Note that we do not
remove the parent from C because otherwise we would lose a possible outcome
of the classification. For instance, imagine a future query that hits documents
contained only found in the parent. In case that the deviation is negative, the
category has too few queries and it must be dropped. Thus, if this happens with
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all the categories that share the same parent category, we aggregate the children
into the parent.

Once we have some categories expanded, in order to classify a query, we
perform a level-wise classification. We begin at the first level of the tree and find
the category of maximum weight. Then, if it has been expanded, we find the
child with maximum weight and so on with the lower levels, until the category
that minimizes the dispersion at the current level has not been expanded.

During the expansion, we generate a new virtual identity for each child and
the virtual identity of the parent stays the same. This way, the log of the parent
in the server may contain queries of other subcategories but it does not affect
personalization. When retracting a category we simply use the virtual identity
of the parent that we preserved in the expansion operation and, if we expand it
again, we reuse the old virtual identities for the children.

As a result, we are able to adjust the level of sparseness of the logs in the
server and, thereby, adjust the trade-off between privacy and personalization.
We refer the reader to the algorithms implemented for this process [13].

5 Empirical results

In order to test the agent and prove that the risk of re-identification is reduced
we used the linkage algorithm described in [12]. This algorithm is supposed to
be applied by the adversary on the server logs and link those belonging to the
same user together.

5.1 Evaluation

The lack of public sets of queries makes difficult the evaluation of the degree of
personalization achieved by the agent as well as the effect that the agent has
on it. As a preliminary experiment we submitted a set of 803 queries through
DisPA from an AOL user and we did not notice any difference with plain search.
Then, we submitted a set of 2743 queries of another AOL user several times and
there was a difference on the order of two results (from first to second place in
the list). Nevertheless, a complete analysis of personalization is out of the scope
of this work, we center our evaluation in the disclosure risk.

We developed an attacking algorithm against our own agent. Such an algo-
rithm could be used by the adversary to rebuild the original user’s server log out
of the partial logs generated by DisPA. The algorithm is based on the observa-
tion that there are terms that are more common in the user’s queries than in
other users’. These terms do not have strong semantic meaning and are classified
according to the rest of the terms in the query. Consequently, these terms are
spread by the dissociation over all partial logs. The algorithm tries to exploit
this by linking the logs that contain these terms.

As mentioned in Section 4.3, an instance of these terms are named enti-
ties. This takes inspiration from the AOL case. The NYT journalists identified
Thelma Arnold because she was looking for venues in her town (“lilburn”) and
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names of relatives (“arnold”). Then, they used a telephone directory to narrow
the search up to 14 individuals [9].

To detect the terms, the adversary has to represent logs as vectors using a tf-
idf scheme. The rationale is that tf-idf reflects the importance of a term in a log
offset over its frequency in the collection of all logs. Then, the algorithm clusters
the vectorial space using the DBSCAN algorithm with the cosine similarity as
distance.

The linkage algorithm initializes with one or more logs known to belong to the
user (auxiliary knowledge), that we call “seeds”. At the end, clusters containing
a seed are joined into one unique cluster that represents the original log.

To evaluate the user’s disclosure risk, that is the risk that the original log
is recovered by the adversary after dissociation, we measure the quality of the
clustering provided by the linkage algorithm. To evaluate the clustering we mea-
sure the F1-Score of the binary classification defined by the property of a query
being part of the final cluster or not.

The F1-Score combines precision and recall. Note that in our case, true pos-
itives are queries of the targeted user that fall in the cluster, false positives are
queries of other users that fall in, true negatives are queries of other users that
fall out and false negatives are queries of the target user that fall out. A higher
F1-Score corresponds to a higher success rate of the adversary.

The DBSCAN clustering requires a parameter as an input that defines the
neighbourhood of a data point. This parameter is not known a priori by the
attacker. We consider the worse-case for the user and find the value that gives
the best clustering through experimentation.

5.2 Experiments

We used the AOL released dataset for the experiments. The dataset contains an
user ID, the terms of the query and the URLs of the results that were clicked.
We performed five experiments described next.

– Experiment 1: We took a sample of logs of 20 different users and submit-
ted their queries through the agent (with query filters disabled). Then, we
applied the clustering algorithm to the resulting dissociated logs taking a
random seed.

– Experiment 2: We added Arnold’s log to the sample of logs. We chose
Arnold’s log because her log contains named entities like “Arnold” or “Lil-
burn” in queries that fall in different categories. We repeated the first exper-
iment under the same conditions to see if the clustering algorithm performed
better. This time we took as seed the dissociated log corresponding to the
class “Arts”, one of the largest dissociated logs. The justification is that it
is more likely that the attacker finds information related to the user in the
largest log.

– Experiment 3: For the third experiment we repeated the second experiment
but enabling the filter of uncommon queries and treating queries with named
entities as described at Section 4.3.
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– Experiment 4: This experiment is intended to evaluate the self-adaptive
DisPA. For this experiment we did not use the AOL dataset because logs
are very small to be specialized enough. Instead, we developed a generator
of queries based on the keywords stored in the ODP that we referred in Sec-
tion 3. The generator takes a probability distribution for the classification
taxonomy as an argument and generates a log of queries accordingly. For
this experiment we used the following distribution:

Adults 0
Arts 0

Games 0.02
Reference 0.02
Shopping 0
Business 0.04
Health 0.02
News 0

Society 0.1
Computers 0.8

Home 0
Science 0
Sports 0

We simulated the submission of these queries first using first implementation
of DisPA and, then, the self-adaptive version setting the threshold of the
coefficient of variation to 80%. We added 20 random users from the AOL
released dataset and applied the linkage algorithm.

– Experiment 5: we repeated the fourth experiment but using the self-adaptive
version of DisPA.

In order to claim whether the user is protected or not, we set 50% of disclosure
risk as a threshold. If F1-Score is below this threshold we say that the user is
protected, and not protected otherwise.

5.3 Results

For the first experiment we found that for small values of ε the algorithm reaches
maximum precision because the final cluster only contains the seed. All queries
in the seed log were queries that fell in the final cluster (true positives) and
there were no queries of other users (false positives). In contrast, the recall is
zero because all-but-one server logs of the user fell out of the final cluster (false
negatives).

This translates to a low F1-Score and hence a low disclosure risk. As we
increase ε more and more logs fell into the final cluster. Nevertheless, this server
log was well dissociated by DisPA and the algorithm, for the given seed, jumped
directly to the situation where the whole collection of server logs fell into the
final cluster. This means that user’s logs could not be linked using the algorithm
with this seed because these logs did not have enough rare terms in common.
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For the second experiment we used Thelma Arnold’s log as the target log.
We saw that for ε = 1.39 we had the optimal clustering. The algorithm had
linked most of the dissociated logs and, thus, if offered a disclosure risk close to
90%.

For the third experiment we took the same parameters for the attacking
algorithm but this time we used the filter for uncommon queries described in
Section 4.3. The disclosure risk was almost constant for the same interval of
values taken in the previous experiments. For ε = 1.9 disclosure risk increased.
This means that logs could not be linked because uncommon terms had been
successfully separated in different logs.

In the fourth experiment, we showed there were some values of the neigh-
bourhood distance for which the user was not protected because the F1-Score
was above 50%. We saw that it made no sense to go on evaluating greater values
than 2 because the precision was maximum. This means that all targeted logs
were falling in the final cluster and the clustering was not going to improve. In
fact, we actually saw all logs in the server fell in the final cluster since recall was
very low.

Finally, in the fifth experiment we did exactly the same, although the seeds
changed because we were considering a different collection of dissociated logs.
In fact, two categories were expanded during the simulation: “Top/Computers”
and “Top/Computers/Internet”.

For this last experiment the disclosure risk was below 50% for all ε and,
therefore, the user was protected. The percentage of disclosure risk reduction
from the standard DisPA in the worst case was around 67%.

6 Discussion and Limitations

One of the main limitations of this work is the assumption of search engines
exceptionally using cookies to track users. This is a strong assumption to hold
today, specially after the revelation of the increasing prevalence of device fin-
gerprinting. However, there is no evidence yet of any search engine using these
techniques at the moment. As a very rough countermeasure the agent replaces
the user-agent string by a more general one. We extracted this user-agent from a
small-scale panopticlick-like survey that we conducted in our circles of acquain-
tances3.

We must admit that the adversary considered is not a fully strategic adver-
sary. In the experiments we are facing a particular algorithm of re-identification
and it might be that a manual inspection could further reveal other information
that the algorithm misses. In favour of the algorithmic approach we must say
that given the amount of logs in real-world servers, any manual approach would
be infeasible.

A limitation is that dissociated profiles might deviate significantly from the
average profile of the population of users. This effect can be detected by an

3 Results of this study can be found at http://www.iiia.csic.es/˜mjuarez/results.html.
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adversary who can extract statistics from the server. However, we cannot prove
this given that we do not have enough information about the distribution of
profiles in real-world servers. As we already noted, there exist real profiles that
are very specialized and are not the result of dissociation.

At the same time, we assume that the auxiliary knowledge available to the
adversary is limited. It is well known that to achieve perfect privacy against an
adversary with unlimited background knowledge is a hard problem [40]. We must
clarify that our model does not protect against such an adversary and assumes
that the auxiliary information is bounded.

We also assume that the search engine and the agent use the same taxonomy
for personalization. This assumption does not hold in most of the cases because
search engines’ taxonomies are oriented to advertising4. It is likely that if we
dissociate independently of the search engine’s taxonomy, the utility provided
by the system will drop. However, since we do not evaluate the utility preserved
by the agent, we cannot confirm such effect and leave this evaluation for future
work.

Another limitation is that the agent might be considered to break the terms
and conditions of the search service. We have implemented DisPA using Google’s
search engine and we have not found any conflict with their privacy policy. How-
ever, since the agent is scraping the URLs of the result list to avoid redirection
through Google’s servers, it might be argued that the agent is altering the service
provided by Google. Furthermore, we do not display Google’s advertisements in
DisPA results pages.

We note that there is a trade-off between the usability and the privacy offered
by the PET for private search. For instance, a search through an anonymous
communication system such as Tor would provide stronger privacy guarantees
than DisPA. Nevertheless, in terms of overhead, DisPA takes 2.5 seconds to
return results in the worse case, when there is no context created (4 times more
than a direct search) and 1.5 seconds for the average case, in case the context
already exists (2 times overhead). The agent also caches result pages to speed
up queries that are submitted multiple times over time and, also, prevent the
adversary to extract information from the frequency of these queries. We think
it is reasonable for a user to sacrifice a second of his search time for a better
privacy.

In order to enforce a reproducible research policy, we have uploaded our code
to a public repository5.

7 Conclusions and Future work

The main contribution of this research is a framework for the development
and evaluation of an agent that provides less disclosure risk in search engines
with an admissible time of response. However, DisPA has some drawbacks that

4 https://www.google.com/settings/ads
5 The source code can be found at https://code.google.com/p/dispa-framework/
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future research may deal with. Future work on this line could focus on improv-
ing personalized classification. For instance, clicking information could also be
incorporated to our model of PQC.

We could also consider vertical searching for personalization. Vertical search-
ing refers to the process of refining consecutive queries to improve search results.
The aforementioned PQC should then take into account short-term preferences
within a session. One of the issues that arises is how to implement a model for
sessions of related queries.

In the line of decreasing disclosure risk, one could consider the generalization
of Named Entities using an ontology like WordNet. For instance, if someone
searches for “lilburn dentists” the agent could generalize “Lilburn” to “Atlanta”
or “Georgia”. Information loss would be greater but then it would be possible
to measure it by the differences between search results pages.

Along with that, evaluating personalization is still an open problem. There
are few studies that aim to measure to what extent search engines personalize
search results. However, personalization is a moving target and the authors of
these studies often admit that their results are not concluding for not running
the experiments for sufficiently long periods of time [41].

Another improvement could be to generalize tracking data used to create vir-
tual identities, from cookies to a more general type of data. Device fingerprinting
is still an open problem but there are some promising approaches that could be
adopted by DisPA in the future [42].

Besides, the attacking algorithm described in section 5 could be tested with
different clustering approaches like sequential clustering described in [43]. The
similarity measure could be improved by boosting the tf-idf scheme using a
dictionary of terms that differentiates the user from the others.

In addition, other measures of disclosure risk may be defined comparing
clusters between clustering of DisPA and non-filtering DisPA. For instance, if
dissociated logs in the former fall into several clusters in the latter, disclosure
risk is lower than if all fall in the same cluster. The Jaccard index could be used
to measure differences between clusters from different classifications.

Finally, we could use more sophisticated privacy measures in our security
analysis of the system. For example, we could explore the use of entropy-based
measures for this purpose [44, 45].
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26. J. E. Jiménez, A. R. Hoyos, J. Parra-Arnau, J. Forné, and D. Rebollo-Monedero,
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